1.35, 1.42, and 1 ; and the line represents calculation from Eq. (2.2) at $\mathrm{Sh}_{1}>0.25$]. Here $\mathrm{Sh}_{1}=\mathrm{k} \Delta \mathrm{x}\left(\mathrm{k}=2 \pi \mathrm{f} / \mathrm{u}_{2}\right.$ is the wave number). The data from experiments at $\mathrm{Sh}_{1}>0.25$ are described satisfactorily by $R^{\prime}=\exp \left[-\left(a_{\mathrm{X}} / \mathrm{b}_{\mathrm{X}}\right) \mathrm{Sh}_{1}\right] \cos \left(a_{\mathrm{X}} \mathrm{Sh}_{1}\right)\left(a_{\mathrm{x}}=1.57, \mathrm{~b}_{\mathrm{x}}=3.14\right)$.

The nature of the relation $R^{\prime}=R^{\prime}\left(\mathrm{Sh}_{1}\right)$ corresponds to hydrodynamic pressure fluctuations. Indeed, the velocity of sound is characteristic of acoustic pressure fluctuations as $\mathrm{Sh}_{\mathrm{I}} \rightarrow$ $0, R^{\prime} \rightarrow 1$. In our case, the determining velocity is the flow velocity u_{2} and at $\mathrm{Sh}_{1}<0.25$ a decrease in Sh_{1} at $\Delta \mathrm{x} / \ell=$ const causes a decrease in R^{\prime} (see Fig. 5), which is inherent to hydrodynamic pressure fluctuations.

LITERATURE CITED

1. P. K. Chang, Separation of Flow, Pergamon Press, New York (1970).
2. M. G. Morozov, "Acoustic emission of cavities immersed in a supersonic gas flow," Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. Mekh. Mashinostr., No. 2 (1960).
3. I. E. Rossiter, "Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds," Am. Rocket Soc. (ARS RM 3438), New York (1966).
4. H. Heller and D. Bliss, "The physical mechanism of flow-induced pressure fluctuations in cavities and concepts of their suppression," Paper, AIAA No. 75-491, New York (1975).
5. M. G. Morozov, "Self-excitation of vibrations under supersonic detached flows," Inzh.Fiz. Zh., 27, No. 5 (1974).
6. Bilanin and Kovert, "Estimate of possible excitation frequencies for shallow rectangular cavities," RTK, No. 3 (1973).
7. W. L. Hankey and J. S. Shang, "Analyses of pressure oscillations in an open cavity," AIAA J., 18, No. 8 (1980).
8. A. N. Antonov, A. N. Vishnyakov, and S. P. Shalaev, "Experimental study of pressure fluctuations in a groove immersed in subsonic or supersonic gas flows," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1981).
9. R. L. Clark, L. G. Kaufman, and A. Maciulailis, "Aero-acoustic measurements for Mach 0.6 to 3.0 flows past rectangular cavities," Paper AIAA No. 80-0036, New York (1980).
10. V. M. Kuptsov, A. F. Syrchin, et al., "Pressure fluctuations at a barrier during the flow of a jet," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1980).

INTERNAL WAVE FIELD IN THE NEIGHBORHOOD OF A FRONT EXCITED
BY A SOURCE MOVING OVER A SMOOTHLY VARYING BOTTOM

> Yu. V. Vladimirov

UDC 551.466

The problem of the propagation of surface waves harmonic in time and quasisinusoidal in space over a smoothly varying bottom is solved in [1] by using the geometric optics method. An analogous problem for internal waves with an arbitrary Brunt-Väisälä frequency distribution over the depth was examined in [2]. The case of internal waves locally sinusoidal in space and time in the presence of slowly varying shear flows was investigated in [3]. Airey wave transformation in a smoothly inhomogeneous layer along the horizontal is examined in [4]. Fronts and lines of equal phase are constructed in [5] for a source moving in a stratified fluid layer in the case of constant layer depth. The asymptotic of the solution for the moving source in the neighborhood of the front of a mode taken separately was written down in [6].

The problem of an internal wave field in the neighborhood of the front of a separate mode generated by a point mass source moving over a smoothly varying bottom is examined in this paper by the method of traveling waves [7], which is one modification of the geometric optics method.

[^0]Let us consider a fluid layer with the Brunt-Väisälä frequency $N(z)$ bounded by a surface $z=0$ and the bottom $z=H(X, Y)$. A point source of intensity Q moves uniformly and rectilinearly with velocity V at a depth z_{0} in the positive direction of the X axis. Then the velocity field in the Boussinesq approximation will satisfy the following linearized system of equations:

$$
\begin{gather*}
\frac{\partial^{2}}{\partial T^{2}}\left(\Delta u+\frac{\partial^{2} u}{\partial z^{2}}\right)+N^{2}(\xi) \Delta u=Q \delta_{T T}^{\prime \prime}(\mathrm{X}-V T) \delta(Y) \delta^{\prime}\left(z-z_{u}\right) \tag{1.1}\\
\Delta u+\nabla \frac{\partial u}{\partial z}=Q \delta\left(z-z_{0}\right) \nabla(\delta(\mathrm{X}-V T) \delta(Y))
\end{gather*}
$$

Here $\nabla=(\partial / \partial X, \partial / \partial Y), \Delta=\partial^{2} / \partial X^{2}+\partial^{2} / \partial Y^{2} ; w$ is the vertical velocity component; $u=\left(u_{1}\right.$, u_{2}) is the horizontal velocity vector. The nonpenetration conditions

$$
\begin{equation*}
w=0 \text { for } z=0, w=\mathbf{u} \cdot \nabla H(X, Y) \text { for } z=H(X, Y) \tag{1.2}
\end{equation*}
$$

are assumed satisfied on the layer boundaries.
Let us introduce the dimensionless parameter $\varepsilon=\lambda / L \ll 1$ that characterizes the smoothness of the change in depth of the bottom; λ is the characteristic wavelength; and L is the horizontal scale of the change in depth of the bottom. Then, in the "slow variables" $x=$ $\varepsilon X, y=\varepsilon Y, t=\varepsilon T$ (the slowness of the change in z is not assumed), the motion equations (1.1) and the boundary conditions (1.2) are written in the form

$$
\begin{gather*}
\frac{\partial^{2}}{\partial t^{2}}\left(\varepsilon^{2} \Delta w+\frac{\partial^{2} w}{\partial z^{2}}\right)+N^{2}(z) \Delta u=\varepsilon^{2} Q \delta_{t t}^{\prime \prime}(x-V t) \delta(y) \delta^{\prime}\left(z-z_{0}\right) \tag{1.3}\\
\varepsilon \Delta \mathbf{u}+\nabla \frac{\partial w}{\partial z}=\varepsilon^{2} Q \delta\left(z-z_{0}\right) \nabla(\delta(x-V t) \delta(y)) \\
w=0 \text { for } z=0, w=\varepsilon \mathbf{u} \cdot \nabla h(x, y) \text { for } z=h(x, y) \tag{1.4}
\end{gather*}
$$

The solution in the case of a layer of constant depth h is presented for w in [6] as the sum of the modes $w=\sum_{n=1}^{\infty} w_{n}$. The first term of the asymptotic is written down there for w_{n} near the front expressed in terms of the Airey function derivative whose argument depends on the first two coefficients of the expansion of the dispersion curve $k_{n}(\omega)=c_{n}^{-1} \omega+d_{n} \omega^{3}+$... at zero, where $k_{n}(\omega)$ is the eigennumber of the spectral problem

$$
\begin{equation*}
F_{n z z}^{\prime \prime}(z, \omega)+k_{n}^{2}(\omega)\left[\frac{N^{2}(z)}{\omega^{2}}-1\right] F_{n}(z, \omega)=0, \quad F_{n}(0, \omega)=F_{n}(h, \omega)=0 \tag{1.5}
\end{equation*}
$$

We shall also seek the solution of the system (1.3), (1.4) in the form of a sum of modes $u=\sum_{n=1}^{\infty} w_{n}, \mathbf{u}=\sum_{n=1}^{\infty} \mathbf{u}_{n}$. Later we refer all the computations to a mode taken separately by omitting the subscript n. Starting from the above, as well as from the structure of the asymptotic of the solution in a layer of constant depth [6], we will seek the solution of the system (1.3), (1.4) in the form

$$
\begin{equation*}
u^{2}=\varepsilon^{2 / 3} \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \varepsilon^{(2 / 3)(h+i)} u_{i k} v_{i}(\varphi), \quad u=\varepsilon^{1 / 3} \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \varepsilon^{(2 / 3)(k+i)} \mathbf{u}_{i k} v_{i+1}(\varphi) \tag{1.6}
\end{equation*}
$$

$\left[v_{i}^{\prime}(\varphi)=v_{i-1}(\varphi), v_{0}(\varphi)=A i^{\prime}(\varphi)\right.$ is the Airey function derivative; $\varphi=\varepsilon^{-2 / 3}((t-\tau(x, y))$. $\sigma(x, y)$), where we consider the argument φ of the order of one].

Since we will be interested in only the first term of the asymptotic for w, we then rewrite (1.6)

$$
\begin{gather*}
w=\varepsilon^{2 / 3} A(z, x, y) v_{0}(\varphi)+\varepsilon^{1 / 3}\left(B(z, x, y) v_{0}(\varphi)+\right. \\
\left.+C(z, x, y) v_{1}(\varphi)\right)+O\left(\varepsilon^{*}\right), \mathbf{u}=\varepsilon^{1 / 3} \mathbf{u}_{0}(z, x, y) v_{1}(\varphi)+O(\varepsilon) \tag{1.7}
\end{gather*}
$$

The functions $A(z, x, y), u_{0}(z, x, y), \tau(x, y), \sigma(x, y)$ are to be determined. Substituting (1.7) into the second equation of (1.3) and equating terms for ε^{0}, we have $u_{0}=A_{z}(z, x$, $\mathrm{y}) \nabla \tau(\mathrm{x}, \mathrm{y}) /\left(\sigma(\mathrm{x}, \mathrm{y})|\nabla \tau(\mathrm{x}, \mathrm{y})|^{2}\right)$. We find the boundary conditions for the functions A, B, C by substituting (1.7) into (1.4): $A=B=C=0$ for $z=0 ; A=B=0, C=A_{z}^{\prime} \nabla \tau \nabla h /\left(\sigma|\nabla \tau|^{2}\right)$ for $z=h(x, y)$.

2. DERIVATION OF THE FUNDAMENTAL EQUATIONS

Let us turn to finding the equations for the functions $\tau(x, y), A(z, x, y)$, and $\sigma(x$, y). Substituting (1.7) into the first equation of (1.3) and equating terms of the order of $\varepsilon^{-2 / 3}$ we obtain

$$
\begin{gather*}
A_{z z}^{\prime \prime}(z, x, y)+|\nabla \tau(x, y)|^{2} N^{2}(z) A(z, x, y)=0, A(0, x, y)= \\
A(h(x, y), x, y)=0 . \tag{2.1}
\end{gather*}
$$

Let us note that the eigenfunctions $A(z, x, y)$ are determined from (2.1) to the accuracy of an arbitrary factor dependent only on x and y; consequently, it is convenient to represent the function $A(z, x, y)$ in the form $A(z, x, y)=\psi(x, y) / f(z, x, y)$, where $f(z, x, y)$ is a solution of the spectral problem (2.1) and satisfies the normalization condition

$$
\begin{equation*}
\int_{0}^{k(x, y)} N^{2}(z) f^{2}(z, x, y) d z=1 . \tag{2.2}
\end{equation*}
$$

The eigenfunctions $f(z, x, y)$ and numbers $\lambda(x, y)$ of the problem (2.1) are assumed known. Then we have the eikonal equation for $\tau(x, y)$:

$$
\begin{equation*}
\left(\frac{\partial \tau}{\partial x}\right)^{2}+\left(\frac{\partial \tau}{\partial y}\right)^{2}=\lambda^{2}(x, y) . \tag{2.3}
\end{equation*}
$$

To find the functions $\psi(x, y)$ and $\sigma(x, y)$ we equate terms of the order ε^{0} after substitution of (1.7) into (1.3). Using the equality $v_{0} \operatorname{IV}(\varphi)=-\varphi v_{0}{ }^{\prime \prime}-3 v_{0}$ ' we obtain two equations (in B containing terms with V_{0} ", and in C containing terms with $\mathrm{v}_{0}{ }^{\prime}$):

$$
\begin{gather*}
\sigma^{2}\left(B_{z z}^{\prime \prime}+\lambda^{2} N^{2}(z) B\right)=2 \varphi A N^{2}(z) \nabla \sigma \nabla \tau+\varphi A \sigma^{4} \lambda^{2}, \tag{2.4}\\
B=0 \text { for } z=0, h(x, y) ; \\
\sigma^{2}\left(C_{z z}^{\prime \prime}+\lambda^{2} N^{2}(z) C\right)=2 \sigma N^{2}(z) \nabla A \nabla \tau+ \tag{2.5}\\
+A N^{2}(z)(2 \nabla \sigma \nabla \tau+\sigma \Delta \tau)+3 A \sigma^{4} \lambda^{2}, \\
C=0 \text { for } z=0, \quad C=A_{z}^{\prime} \nabla \tau \nabla h /\left(\sigma \lambda^{2}\right) \quad \text { for } \quad z=h(x, y) .
\end{gather*}
$$

Let us first examine Eq. (2.4). Multiplying both its sides by the function $A(z, x$, y) and integrating with respect to z between 0 and $h(x, y)$, we find the equation for σ :

$$
\begin{equation*}
2 \nabla \sigma \nabla \tau+a(x, y) \lambda^{2} \sigma^{4}=0\left(a(x, y)=\int_{0}^{h(x, y)} f^{2}(z, x, y) d z\right) . \tag{2.6}
\end{equation*}
$$

It can be shown that the functions $a(x, y)$ and $\lambda(x, y)$ are expressed in terms of the expansion of the dispersion curve $k(\omega, x, y)=c^{-1}(x, y) \omega+d(x, y) \omega^{3}+\ldots$ of the spectral problem (1.5) at zero, in which in place of the functions $F(z, \omega)$ and $k(\omega)$ there are $F(z$, $\omega, x, y)$ and $k(\omega, x, y)$, while the variables x and y are considered fixed:

$$
\lambda(x, y)=c^{-1}(x, y), a(x, y)=2 d(x, y) c(x, y),
$$

where $c(x, y)$ is the group velocity for $\omega=0: c(x, y)=[\partial k(\omega, x, y) / \partial \omega]_{\omega=0^{-1}}$.
Let us examine (2.5). We multiply both its sides by $A(z, x, y)$ and integrate with respect to z between 0 and $h(x, y)$. Taking account of the normalization condition (2.2), we obtain

$$
\begin{gather*}
-\sigma \lambda^{-2} \psi^{2}\left[f_{z}^{\prime}(h, x, y)\right]^{2} \nabla \tau \nabla h=\sigma \nabla \tau \nabla \psi^{2}+ \\
+-\psi^{2}(2 \nabla \tau \nabla \sigma+\sigma \Delta \tau)+3 \psi^{2} \sigma^{4} \lambda^{2} \nu^{2} \alpha . \tag{2.7}
\end{gather*}
$$

Differentiating (2.1) with respect to the horizontal variable, it is easy to show that $\left[f_{z}^{\prime}(h, x, y)\right]^{2} \nabla h(x, y)=-\nabla \lambda^{2}(x, y)$. Then we rewrite the transport equations (2.7) in the form

$$
\begin{equation*}
\nabla \ln \left(\frac{\psi^{2}}{\lambda^{2} \sigma^{4}}\right) \Gamma \tau+\Delta \tau=0 \tag{2.8}
\end{equation*}
$$

Therefore, the construction of the field $w(1.7)$ reduces to solving the eikonal equation (2.3) and the transport equations (2.6) and (2.8).

3. SOLUTION OF THE EIKONAL AND TRANSPORT EQUATIONS

The characteristic system for (2.3) (see [8], say) appears as follows ($p=\partial \tau / \partial x, q=$ $\partial \tau / \partial y):$

$$
\begin{equation*}
\dot{x}=c^{2}(x, y) p, \quad \dot{y}=c^{2}(x, y) q, \quad \dot{p}=-c_{x}^{\prime} / c(x, y), \quad \dot{q}=-c_{y}^{\prime} / c(x, y) \tag{3.1}
\end{equation*}
$$

There hence results that $\dot{\tau}=1$; consequently, it is convenient to take the eikonal τ as the parameter of integration. Asolution of the system (3.1) is the one-parameter family of functions $x\left(\tau, \tau_{0}\right), y\left(\tau, \tau_{0}\right), p\left(\tau, \tau_{0}\right), q\left(\tau, \tau_{0}\right)$, whose first two functions determine rays on the x, y plane, and τ_{0} is the initial eikonal or, equivalently, the time of ray emergence from the source. We assume the source moves along the axis $y=0$ and passes the origin at the time $\tau=0$. Then we have initial conditions for the system (3.1):

$$
\begin{equation*}
x_{0}=V \tau_{0}, y_{0}=0, p_{0}=1 / V ; \eta_{0}= \pm \sqrt{1 / c^{3}\left(x_{0}, 0\right)-1 / V^{2}} \tag{3.2}
\end{equation*}
$$

The ray equations $x=x\left(\tau, \tau_{0}\right), y=y\left(\tau, \tau_{0}\right)$ for fixed τ_{0} yield a specific ray and a wave front for fixed τ. We assume that the ray equations are solvable for τ and τ_{0} :

$$
\begin{equation*}
\tau=\tau(x, y), \tau_{0}=\tau_{0}(x, y) . \tag{3.3}
\end{equation*}
$$

For this it is necessary that the Jacobian $D \equiv x_{\tau}{ }^{\prime} y_{\tau_{\rho}}{ }^{\prime}-x_{\tau_{0}}{ }^{\prime} y_{\tau}{ }^{\prime} \neq 0$. Equations (3.3) for the point x, y determine the eikonal τ (the time of front arrival at the point x, y) and the initial eikonal τ_{0} (the time of ray emergence from the source).

Transport equations (2.6) and (2.8) are integrated along the characteristics of (3.1). The appropriate quadrature for (2.6) has the form

$$
\begin{equation*}
\sigma(x, y)=\left[\frac{3}{2} \int_{\tau_{0}(x, y)}^{\tau(x, y)} a\left(x\left(t, \tau_{0}\right), y\left(t, \tau_{0}\right)\right) d t\right]^{-1 / 3} \cdot \tag{3.4}
\end{equation*}
$$

Taking account of the expression along the ray [8], $\Delta \tau=\nabla \ln (J / c) \nabla \tau[J(x, y)$ is the geometric divergence of a ray tube $(J=D / c)]$, integration of (2.8) yields the "conservation law' $c(x, y) \psi^{2}(x, y) J(x, y) /\left(\sigma^{4}(x, y) J\left(x_{0}, 0\right)\right)=B\left(x_{0}\right)$. Here $J(x, y)$ and $J\left(x_{0}, 0\right)$ are the geometric divergence of the ray tube at the front and at the point of ray emergence, respectively, $J\left(x_{0}, 0\right)=\sqrt{V^{2}-c^{2}\left(x_{0}, 0\right)}$. The constant $B\left(x_{0}\right)$ is found from the solution of the problem with constant depth of the bottom $h\left(x_{0}, 0\right): B\left(x_{0}\right)=Q C^{3}\left(x_{0}, 0\right) f_{Z^{\prime}}\left(z_{0}, x_{0}, 0\right) /\left[4\left(V^{2}-\right.\right.$ $\left.\left.c^{2}\left(x_{0}, 0\right)\right)\right]$. We write down the final expression

$$
\begin{equation*}
\psi(x, y)=\frac{Q_{0}^{2}(x, y)\left(V^{2}-c^{2}\left(x_{0}, 0\right)\right)^{1 / 2} c^{3 / 2}\left(x_{0}, 0\right) f_{z}^{\prime}\left(z_{0}, x_{0}, 0\right)}{2 c^{1 / 2}(x, y) j^{1 / 2}(x, y)} \tag{3.5}
\end{equation*}
$$

Therefore, we have the following scheme for finding the vertical velocity field in the neighborhood of a front of a moving source: a) we solve the characteristic system (3.1) with the initial conditions (3.2); b) solving the ray equations, we find the eikonal $\tau(x$, y) and the time of ray emergence $\tau_{0}(x, y) ; c$) solving the boundary-value problem (2.1), we obtain the normalized eigenfunction $f(z, x, y)$ and the coefficient $a(x, y)$; d) integrating $a(x, y)$ along a ray, we determine $\sigma(x, y)(3.4)$; e) we find the geometric divergence J, say, by numerical differentiation; f) evaluating the function $\psi(x, y)$ by means of (3.5) and multiplying by $f(z, x, y)$ we have the amplitude $A(z, x, y) ; g)$ multiplying the amplitude $A(z$, x, y) by the Airey function derivative of argument f, we obtain the vertical velocity of a mode taken separately.

4. EXAMPLE

Let us consider the case when the Brunt-Väisälä frequency $N=$ const and the depth of the bottom depends only on one coordinate in a linear manner $H(y)=\beta y$. Let us introduce a coordinate system with the x axis proceeding along the "shore" ($y=0$), a source moves from left to right in the positive direction of the x axis at the velocity V parallel to the "shore" at a distance y_{0} away and at a depth z_{0}. Let us examine the first mode. Then (2.1) yields the following eigenfunction $f(z, y)$ and eigennumber $\lambda(y)(\gamma=N \beta / \pi)$:

$$
\begin{equation*}
f(z, y)=\frac{\sqrt{2}}{N \sqrt{\bar{\beta} y}} \sin \frac{\pi z}{\beta y}, \quad \lambda(y) \equiv \frac{1}{c(y)}=\frac{1}{\gamma y} . \tag{4.1}
\end{equation*}
$$

Let us write down the characteristic system and the initial conditions for the eikonal equation

$$
\begin{equation*}
\dot{x}=\gamma^{2} y^{2} / V, x_{0}=V \tau_{0}, \dot{y}= \pm \gamma y \sqrt{1-(\gamma y / V)^{2}}, y_{0}=y_{0} \tag{4.2}
\end{equation*}
$$

Here and henceforth, the upper sign corresponds to the domain $y>y_{0}$ and the lower to the domain $\mathrm{y}<\mathrm{y}_{0}$.

Integrating system (4.2), we obtain the ray equation

$$
\begin{equation*}
y=\frac{V}{\gamma} \operatorname{ch}^{-1}\left(\pm \operatorname{arch}\left(\frac{V}{\gamma y_{0}}\right)-\gamma\left(\tau-\tau_{0}\right)\right), \quad x=x_{0}+\frac{\gamma}{\Gamma} y_{0} y \operatorname{sh}\left(\gamma\left(\tau-\tau_{0}\right)\right) \tag{4.3}
\end{equation*}
$$

$\left[\operatorname{arch} x=\ln \left(x+\sqrt{x^{2}-1}\right)\right]$. The rays given by system (4.3) are semicircles of radius V / γ with centers located along the "shore." These semicircles have an envelope (caustic) for $y=V / \gamma$. Henceforth, the field outside the caustic circle and the "shore" is examined.

Since the wave pattern in this case is stationary in a coordinate system moving together with the source ($\xi=\mathrm{Vt}-\mathrm{x}$), then the front is determined from the equations

$$
\begin{equation*}
\frac{d \xi}{d y}=\frac{ \pm \sqrt{V^{2}-(\gamma y)^{2}}}{\gamma y}, \quad \xi\left(y_{0}\right)=0 \tag{4.4}
\end{equation*}
$$

and has the form

$$
\begin{gather*}
\xi= \pm \frac{V}{\gamma}\left(\alpha_{1}(y)-\alpha_{2}(y)\right) \\
\alpha_{1}(y)=\operatorname{arch}\left(\frac{V}{\gamma y_{0}}\right)-\operatorname{arch}\left(\frac{V}{\gamma y}\right), \quad \alpha_{2}(y)=\sqrt{1-\left(\frac{\gamma y_{0}}{V}\right)^{2}}-\sqrt{1-\left(\frac{\gamma y}{V}\right)^{2}} \tag{4.5}
\end{gather*}
$$

The ray equations (4.3) are solved for τ and τ_{0} :

$$
\tau=\frac{x}{V} \pm \frac{1}{\gamma}\left(\alpha_{1}(y)-\alpha_{2}(y)\right), \quad \tau_{0}=\frac{x}{V} \mp \frac{1}{\gamma} \alpha_{2}(y) .
$$

The coefficient is $a(\mathrm{x}, \mathrm{y})=\mathrm{N}^{-2}$; hence,

Fig. 1

Fig. 2

$$
\begin{equation*}
\sigma(y)=\left(\pm \frac{3}{2} N^{-2} \gamma^{-1} \alpha_{1}(y)\right)^{-1 / 3} . \tag{4.6}
\end{equation*}
$$

Let us write down the expression for the argument $\varphi(\xi, y)$ of the Airey function derivative

$$
\begin{equation*}
\varphi(\xi, y)=\left(\frac{\xi}{1} \mp \frac{\left(\alpha_{1}(y)-\alpha_{2}(y)\right.}{\gamma}\right)\left(\pm \frac{3}{2} \frac{\alpha_{1}(y)}{N^{2} \gamma}\right)^{-1 / 3} . \tag{4.7}
\end{equation*}
$$

Using the Liouville theorem [9], we have the geometric divergence $J=\sqrt{V^{2}-\gamma^{2} y^{2}}$.
Therefore, all the elements in the solution for $w(3.5)$ are found. We present the final expression

$$
\begin{equation*}
w=\frac{Q \sigma^{2}(y) c^{3 / 2}\left(y_{0}\right)}{2 c^{1 / 2}(y)}\left(\frac{V^{2}-c^{2}\left(y_{0}\right)}{V^{2}-c^{2}(y)}\right)^{1 / 4} f_{z}^{\prime}\left(z_{0}, y_{0}\right) f(z, y) \mathrm{Ai}^{\prime}(\varphi(\xi, y)) \tag{4.8}
\end{equation*}
$$

[the functions $c(y), f(z, y), \sigma(y)$, and $\varphi(\xi, y)$ are determined from (4.1), (4.6), and (4.7)].
Results of numerical computations in the dimensionless variables $\xi^{*}=\xi \gamma / \mathrm{V}, \mathrm{y}^{*}=\mathrm{y} / \mathrm{V}$, $z^{*}=z / \beta y_{0}, Q^{*}=Q N^{2} / V^{3}, w^{*}=w / V$ are given in Figs. I and 2. The left and right fronts computed by means of (4.5) for $y_{0} *=0.4$ are shown in Fig. 1. The solid lines in Fig. 2 are graphs of the vertical velocity $w^{*}\left(\xi^{*}\right)$ constructed by means of (4.8) for $Q^{*}=1, z_{0}^{*}=$ $0.2, z^{*}=0.1$, and $y^{*}=0.29$ (a), $y^{*}=0.51$ (b); the dashes are the vertical velocity for the constant depth $H^{*}=1$. It is seen that the wave amplitude for a variable bottom is less at the left of the motion axis than for a constant bottom and is greater at the right.

The author is grateful to V. A. Borovikov for constant attention to the research.

LITERATURE CITED

1. J. B. Keller, "Surface waves on water of nonuniform depth," J. Fluid Mech., 4, Pt. 6 (1958).
2. J. B. Keller and C. Mow Van, "Internal wave propagation in an inhomogeneous fluid of nonuniform depth," J. Fluid Mech., 38, Pt. 2 (1969).
3. A. G. Voronovich, "Surface and internal wave propagation in the geometric optics approximation," Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 12, No. 8 (1976).
4. V. A. Borovikov and Yu. V. Vladimirov, "Airey wave transformation in an ocean smoothly inhomogeneous along the horizontal," in: Waves and Diffraction: Tr. 9th All-Union Symp. on Diffraction, Vol. 1, Tbilisi (1985).
5. J. B. Keller and W. H. Munk, "Internal wave wakes of a body movong in astratified fluid," Phys. Fluids, 13, No. 6 (1970).
6. V. A. Borovikov, Yu. V. Vladimirov, and M. Ya. Kel'bert, "Internal gravitational wave field excited by localized sources," Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 20, No. 6 (1984).
7. R. Lewis, "Formal theory of traveling waves," Quasioptics [Russian translation], Mir, Moscow (1966).
8. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Shortwave Diffraction Methods [in Russian], Nauka, Moscow (1972).
9. M. V. Fedoryuk, Ordinary Differential Equations [in Russian], Nauka, Moscow (1985).

[^0]: Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 89-94, July-August, 1989. Original article submitted April 13, 1988.

