
1.35, 1.42, and i; and the line represents calculation from Eq. (2.2) at Sh I > 0.25]. Here 
Sh I = kAx (k = 2~f/u 2 is the wave number). The data from experiments at Sh I > 0.25 are de- 
scribed satisfactorily by R' = exp [-(ax/bx)Shl] cOs~xShl) (a x = 1.57, b x = 3.14). 

The nature of the relation R' = R'(Sh I) corresponds to hydrodynamic pressure fluctuations. 
Indeed, the velocity of sound is characteristic of acoustic pressure fluctuations as Sh I § 
0, R' + i. In our case, the determining velocity is the flow velocity u 2 and at Sh I < 0.25 
a decrease in Sh I at Ax/~ = const causes a decrease in R' (see Fig. 5), which is inherent 
to hydrodynamic pressure fluctuations. 
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INTERNAL WAVE FIELD IN THE NEIGHBORHOOD OF A FRONT EXCITED 

BY A SOURCE MOVING OVER A SMOOTHLY VARYING BOTTOM 

Yu. V. Vladimirov UDC 551.466 

The problem of the propagation of surface waves harmonic in time and quasisinusoidal 
in space over a smoothly varying bottom is solved in [i] by using the geometric optics me- 
thod. An analogous problem for internal waves with an arbitrary Brunt-Vaisala frequency 
distribution over the depth was examined in [2]. The case of internal waves locally sinu- 
soidal in space and time in the presence of slowly varying shear flows was investigated in 
[3]. Airey wave transformation in a smoothly inhomogeneous layer along the horizontal is 
examined in [4]. Fronts and lines of equal phase are constructed in [5] for a source moving 
in a stratified fluid layer in the case of constant layer depth. The asymptotic of the solu- 
tion for the moving source in the neighborhood of the front of a mode taken separately was 
written down in [6]. 

The problem of an internal wave field in the neighborhood of the front of a separate 
mode generated by a point mass source moving over a smoothly varying bottom is examined in 
this paper by the method of traveling waves [7], which is one modification of the geometric 
optics method. 
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i. FORMULATION OF THE PROBLEM 

AND SELECTION OF THE FORM OF THE SOLUTION 

Let us consider a fluid layer with the Brunt-Vaisala frequency N(z) bounded by a sur- 
face z = 0 and the bottom z = H(X, Y). A point source of intensity Q moves uniformly and 

rectilinearly with velocity V at a depth z 0 in the positive direction of the X axis. Then 
the velocity field in the Boussinesq approximation will satisfy the following linearized 

system of equations: 

(i.i) 
, ,~,v = = Q S ( s _ z o ) V < 6 ( X _ V T ) 8 ( y ) ) "  ~ u ~ - V T E  

Here 7 = (8/8X, 8/8Y), & = 32/8X2 + 82/3Y2; w is the vertical velocity component; 
u 2) is the horizontal velocity vector. The nonpenetration conditions 

~" = 0 fo r  Z = O, ~t; = u . v H ( X ,  }r) fo r  z = H(X,  }r). 

u = (Ul, 

(1.2) 

are assumed satisfied on the layer boundaries. 

Let us introduce the dimensionless parameter s = I/L << 1 that characterizes the smooth- 
ness of the change in depth of the bottom; i is the characteristic wavelength; and L is the 
horizontal scale of the change in depth of the bottom. Then, in the "slow variables" x = 
EX, y = EY, t = sT (the slowness of the change in z is not assumed), the motion equations 

(i.i) and the boundary conditions (1.2) are written in the form 

a~ ( , a~-.,I o . - - r  e2Aw~ - + N 2 ( z )  A u ' = a - Q 6 ~ ( x - - V t ) 6 ( Y ) 6 ' ( z - - z o ) ,  ( 1 . 3 )  
at- \ Oz.,_ } 

a~ = ~'-'Q6 (s -- %) V (~ (x -- Vt) 6 (u)); 8Au + V T T  

W ~ 0 fo r  Z = O, u~ = e u . v h ( x  , y) for  z = h(x, y). ( 1 . 4 )  

The solution in the case of a layer of constant depth h is presented for w in [6] as 

oo 

the sum of the modes iv = ~ to=. The first term of the asymptotic is written down there for 

w n near the front expressed in terms of the Airey function derivative whose argument depends 
on the first two coefficients of the expansion of the dispersion curve kn(~) = Cn-l~ + dn m3 + 
... at zero, where kn(~) is the eigennumber of the spectral problem 

F"~'~('~'~)-"-~']'(~ L ~ l ] F ~ , ( z , @ = 0 ,  /"n (0, @ = F ,  (h, @ = 0. ( i . 5 )  

We s h a l l  a l s o  s e e k  t h e  s o l u t i o n  o f  t h e  s y s t e m  ( 1 . 3 ) ,  ( 1 . 4 )  i n  t h e  f o r m  o f  a sum o f  m o d e s  

w = ~ w,~, u = ~ u~. Later we refer all the computations to a mode taken separately by omit- 
71=l  7 t = l  

ting the subscript n. Starting from the above, as well as from the structure of the asymp- 
totic of the solution in a layer of constant depth [6], we will seek the solution of the 

system (1.3), (1.4) in the form 

~ 0  h=O ~=0 h=O 
( i . 6 )  

[vi'(~) = vi_l(9), v0(9) = Ai'(~) is the Airey function derivative; ~ = g-2/3((t - T(x, y)). 
o(x, y)), where we consider the argument 9 of the order of one]. 

Since we will be interested in only the first term of the asymptotic for w, we then 
rewrite (1.6) 

w = a-, A ( z ,  z ,  Y)Vo(9) + a~"3(B(z, z ,  U)Vo(9) § 
§ C(z, z, y)vl(~)) + 0(8~), u = ~v3u0(z, x, y )v@)  § 0(8). (1.7) 
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The functions A(z, x, y), u0(z, x, y), ~(x, y), o(x, y) are to be determined. Substituting 
(1.7) into the second equation of (1.3) and equating terms for e ~ we have u 0 = Az'(Z , x, 
y)V~(x,y)/(o(x,y)IV~(x,y)12). We find the boundary conditions for ~he functions A, B, C 
by substituting (1.7) into (1.4): A = B = C = 0 for z = 0; A = B = 0, C = Az'V~Vh/(olV~I 2) 
for z = h(x, y). 

2. DERIVATION OF THE FUNDAMENTAL EQUATIONS 

Let us turn to finding the equations for the functions T(x, y), A(z, x, y), and o(x, 
y). Substituting (1.7) into the first equation of (1.3) and equating terms of the order 
of E -2/3 we obtain 

A:. (~, x, ~) + lYre (z, v)I ~ N:  (z) A (~, ~, ~) = 0, A (0, x, y) = 
A (h (x, y), x, y) = 0. ( 2 . 1 )  

L e t  u s  n o t e  t h a t  t h e  e i g e n f u n c t i o n s  A ( z ,  x ,  y )  a r e  d e t e r m i n e d  f r o m  ( 2 . 1 )  t o  t h e  a c c u r a c y  
of an arbitrary factor dependent only on x and y; consequently, it is convenient to represent 
the function A(z, x, y) in the form A(z, x, y) = ~(x, y)/f(z, x, y), where f(z, x, y) is 
a solution of the spectral problem (2.1) and satisfies the normalization condition 

h(x.y) 

0 
N 2 (~) ! ~ (~, x,  y) dz  = t ( 2 . 2 )  

The eigenfunctions f(z, x, y) and numbers ~(x, y) of the problem (2.1) are assumed known. 
Then we have the eikonal equation for ~(x, y): 

To find the functions r 
tution of (1.7) into (1.3). Using the equalityv01V(~) = -~v0" - 3v 0 
(in B containing terms with v0", and in C containing terms with v0'): 

( 0~] 2 ( 0~/2 = ~2 (x, Y). (2 3) 
7Fx) + toy /  

y) and o(x, y) we equate terms of the order go after substi- 
' we obtain two equations 

(pAo %~, o ~ (B:z + ~2N" (z) B)  = 2 ~ A N  2 (z) V~V~ + 4 o 

C = 0 

Let us first examine Eq. 
y) and integrating with respect to z between 0 and h(x, y), we find the equation for o: 

B ---- 0 f o r  z ---- 0, h(x, y); 

~- (ci~ + ~ N  ~ (~) c) = 2~m: (~) y A W  + 
+ AN ~ (z) (2VoVm ~- ohm) ~ 3Ao4~ ", 

# o 

for  z = 0, C ---- A~V'~Vh/(ak ~) for  z = h (x, y). 

( 2 . 4 ) .  

( 2 . 4 )  

( 2 . 5 )  

Multiplying both its sides by the function A(z, x, 

h(x,y) ) 
2VoV~ + a (z ,  u) ~; -`s4 -~ 0 a (x, y) = [ /2 (z, x, '.t) dz  

0 

( 2 . 6 )  

It can be shown that the functions a (x, y) and %(x, y) are expressed in terms of the 
expansion of the dispersion curve k(~, x, y) = c-1(x, y)~ + d(x, y)m3 + ... of the spectral 
problem (1.5) at zero, in which in place of the functions F(z, m) and k(~) there are F(z, 
m, x, y) and k(~, x, y), while the variables x and y are considered fixed: 

~(x, y) = c-a(x, y), a(x, y) = 2d(x, g)c(x, y), 

w h e r e  c ( x ,  y )  i s  t h e  g r o u p  v e l o c i t y  f o r  ~ = 0:  c ( x ,  y )  = [ 3 k ( ~ ,  x ,  y ) / 3 ~ ] ~ = 0  - z  

L e t  us  e x a m i n e  ( 2 . 5 ) .  We m u l t i p l y  b o t h  i t s  s i d e s  by A ( z ,  x ,  y )  and  i n t e g r a t e  w i t h  r e -  
s p e c t  t o  z b e t w e e n  0 and  h ( x ,  y ) .  T a k i n g  a c c o u n t  o f  t h e  n o r m a l i z a t i o n  c o n d i t i o n  ( 2 . 2 ) ,  we 
o b t a i n  

_ ~ - b  ~ [/~ (h, =, ~)1~ WVh = ~V~V~ ~ + 
_[_q)2 (2VTV~q_oAjq_3~4>~a .  ( 2 . 7 )  
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Differentiating (2.1) with respect to the horizontal variable, it is easy to show that 
[fz'(h, x, y)]2Vh(x, y) = -VX2(x, Y). Then we rewrite the transport equations (2.7) in the 

form 

V in V~ q- A~ = O. ( 2 . 8 )  

Therefore, the construction of the field w (1.7) reduces to solving the eikonal equation 
(2.3) and the transport equations (2.6) and (2.8). 

3. SOLUTION OF THE EIKONAL AND TRANSPORT EQUATIONS 

The characteristic system for (2.3) (see [8], say) appears as follows (p = 8t/3x, q = 
a t / 3 y ) :  

t t /  

x = c ~ @,  u) p ,  y : c2 (~ ,  y)  ~, p = - c~l~  (x ,  y) ,  q : - ~ ,  ~ (~, ~). ( 3 . 1 )  

There hence results that i = I; consequently, it is convenient to take the eikonal t 
as the parameter of integration. A solution of the system (3.1) is the one-parameter family 
of functions x(T, c0), y(~, t0), p(~, t0), q(T, t0), whose first two functions determine 
rays on the x, y plane, and t 0 is the initial eikonal or, equivalently, the time of ray emer- 
gence from the source. We assume the source moves along the axis y = 0 and passes the ori- 
gin at the time T = 0. Then we have initial conditions for the system (3.1): 

Xo ~ Vmo, Yo ~ 0, Po = t / V ;  qo = ~V<l t c~(xo ,  O) - -  t l V  z. ( 3 . 2 )  

The ray equations x = x(~, t0), y = y(T, c o ) for fixed ~0 yield a specific ray and a 
wave front for fixed T. We assume that the ray equations are solvable for �9 and ~0: 

= re(x, y), T o ~ To(X , y). ( 3 . 3 )  

For this it is necessary that the dacobian D ~ xm'y T ' - xT 0'yT' ~ 0. Equations (3.3) for 
the point x, y determine the eikonal �9 (the time of ~ront arrival at the point x, y) and 
the initial eikonal t 0 (the time of ray emergence from the source). 

Transport equations (2.6) and (2.8) are integrated along the characteristics of (3.1). 
The appropriate quadrature for (2.6) has the form 

_3_.3 2 ~( xfy ) ]-1/,3, 
o (x, y) = a (x (t, '~o), Y (t, '~o)) at 

-i:o(X,y) 
(3.4) 

Taking account of the expression along the ray [8], AT = V in (J/c)Vm [J(x, y) is the geo- 
metric divergence of a ray tube (J = D/c)], integration of (2.8) yields the "conservation 
law" c(x, y)~2(x, y)J(x, y)/(o4(x, y)J(x 0, 0)) = B(x0). Here J(x, y) and J(x 0, 0) are the 
geometric divergence of the ray tube at the front and at the point of ray emergence, respec- 
tively, J(x0, 0) = vfV 2 - c2(x0, 03. The constant B(x 0) is found from the solution of the 
problem with constant depth of the bottom h(x0, 0): B(x 0) = Qc3(x0, 0)fz'(Z0, x 0, 0)/[4(V 2 - 
c2(x0, 0))]. We write down the final expression 

(~, y) = ?o~ Ix, ~) ( v  ~ - ~ G ,  ~ ~ ~ (~, o) s; (~o, ~o, o) 
2c l t~ (x , y )  d s l ~ ( x , y  ) - - .  ( 3 . 5 )  

Therefore, we have the following scheme for finding the vertical velocity field in the 
neighborhood of a front of a moving source: a) we solve the characteristic system (3.1) 
with the initial conditions (3.2); b) solving the ray equations, we find the eikonal t(x, 
y) and the time of ray emergence c0(x, y); c) solving the boundary-value problem (2.1), we 
obtain the normalized eigenfunction f(z, x, y) and the coefficient a(x, y); d) integrating 
a(x, y) along a ray, we determine o(x, y) (3.4); e) we find the geometric divergence J, say, 
by numerical differentiation; f) evaluating the function ~(x, y) by means of (3.5) and mul- 
tiplying by f(z, x, y) we have the amplitude A(z, x, y); g) multiplying the amplitude A(z, 
x, y) by the Airey function derivative of argument ~, we obtain the vertical velocity of 
a mode taken separately. 
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4. EXAMPLE 

Let us consider the case when the Brunt-Vaisala frequency N = const and the depth 
of the bottom depends only on one coordinate in a linear manner H(y) = ~y. Let us introduce 
a coordinate system with the x axis proceeding along the "shore" (y = 0), a source moves 
from left to right in the positive direction of the x axis at the velocity V parallel to 
the "shore" at a distance Y0 away and at a depth z 0. Let us examine the first mode. Then 
(2.1) yields the following eigenfunction f(z, y) and eigennumber X(y) (~ = N~/~): 

~/2 s in~Z ~ ( g ) ~  i ~ (4.1) 
i (z, y) - iv  1 / ~  Py'  ~ (y) - r y "  

Let us write down the characteristic system and the initial conditions for the eikonal 

equation 

x ----- ?2g21V, x o = V~:o, g = ~ ? y ~ i  - -  ( y y f V )  ~, go = go. (4.2) 

H e r e  and  h e n c e f o r t h ,  t h e  u p p e r  s i g n  c o r r e s p o n d s  t o  t h e  domain  y > Y0 and  t h e  l o w e r  t o  t h e  
domain y < Y0- 

Integrating system (4.2), we obtain the ray equation 

= - -  ~, (~--%) , x = x0 § ~0'i s h  (V (~ - -  %)) ( 4 . 3 )  
? 

[ a r c h x  = l n ( x  + r  The r a y s  g i v e n  by  s y s t e m  ( 4 . 3 )  a r e  s e m i c i r c l e s  o f  r a d i u s  V/~ 
with centers located along the "shore." These semicircles have an envelope (caustic) for 
y = V/~. Henceforth, the field outside the caustic circle and the "shore" is examined. 

Since the wave pattern in this case is stationary in a coordinate system moving together 
with the source (g = Vt - x), then the front is determined from the equations 

d_~ = + Vv~-(Ty) ~ ~(Yo) = 0 (4.4) 
dg ?y ' 

and has the form 
V 

= 4- T (~1 (.~) - ~ (y)); 

_ (__7) a l ( g ) = a r c h  ~ , ~'2(g) -- --1 / -- 
(4 .5)  

The ray equations (4.3) are solved for T and c0: 

__~§ 

The coefficient is a(x, y) = N-2; hence, 

x _ _  4_ 
To = - V  + -~- ~ (u). 

i0 .8 

~-+ o #  o,2 o 

Fig. 1 

I 

~i-o,2 

I ,~ ! .-, , l - a ~  
~ o j 5  o,25 q s5 

Fig. 2 

596 



3 ~--1 '3 
~ (7/) =: __~ _:r. N - ' L f - I ~ ,  (y)) . (4.6) 

Let us write down the expression for the argument ~($, y) of the Airey function derivative 

(~ (~,i~/)--~(w)))( 3 ~,(7/)) -I/~ (4.7) 

Using the Liouville theorem [9], we have the geometric divergence J = JV 2 - ~2y2_ 

Therefore, all the elements in the solution for w (3.5) are found. We present the final 
expression 

2 :7 1 ,i~= ~c~/~,j) \ T Z . c ~  l~(~o, Uo)/(~, u)A~'(,~(~, u)) (4.8)  

[the functions c(y), f(z, y), o(y), and ~(~, y) are determined from (4.1), (4.6), and (4.7)]. 

Results of numerical computations in the dimensionless variables 6" = g~/V, y* = y~/V, 
z* = z/$y0, Q* = QN2/V 3, w* = w/V are given in Figs. 1 and 2. The left and right fronts 
computed by means of (4.5) for Y0* = 0.4 are shown in Fig. i. The solid lines in Fig. 2 
are graphs of the vertical velocity w*(g*) constructed by means of (4.8) for Q* = i, z0* = 
0.2, z* = 0.i, and y* = 0.29 (a), y* = 0.51 (b); the dashes are the vertical velocity for 
the constant depth H* = i. It is seen that the wave amplitude for a variable bottom is less 
at the left of the motion axis than for a constant bottom and is greater at the right. 

The author is grateful to V. A. Borovikov for constant attention to the research. 
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